Программно-технический комплекс «ЭКРА-СМПР»

Руководство по эксплуатации

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(727) 345-47-04

Иваново (4932)77-34-06

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Беларусь +(375) 257-127-884

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47

Россия +7(495)268-04-70

эл.почта: erk@nt-rt.ru || сайт: https://ekra.nt-rt.ru/

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Программно-технический комплекс «ЭКРА-СМПР» (ПТК «ЭКРА-СМПР») разработан компанией НПП «ЭКРА» в партнерстве с «ИЦ Энергосервис» для построе-ния систем мониторинга переходных режимов (СМПР), предназначенных для измерения параметров и изучения динамических режимов работы энергосистем. СМПР позволяет получить глубокий уровень детализации при анализе происходящих в энергосистеме событий и процессов.

Для Системного Оператора («СО ЕЭС») наличие СМПР позволяет решать широкий круг задач, таких как:

- контроль устойчивости энергосистем;
- мониторинг и анализ низкочастотных межзональных колебаний:
- оценка состояния электрического режима;
- верификация моделей энергосистем;
- динамический контроль и повышение пропускной способности ЛЭП;
- плановое выделение на изолированную работу и ресинхронизация участков энергосистем.

В основе СМПР используется технология синхронизированных векторных измерений (СВИ) – синхронное измерение параметров основной гармоники – частоты, амплитуды и фазы напряжений и токов на каждом периоде колебаний (20 мс) в различных точках энергосистемы.

Областью применения ПТК «ЭКРА-СМПР» являются электроэнергетические объекты – крупные подстанции и электростанции, на которых установка СМПР необходима в соответствии с требованиями «Правил технологического функционирования электроэнергетических

систем». Данные требования касаются предоставления архивных данных СВИ, а также передачи этих данных СО в режиме реального времени по протоколу С37.118. Техническое решение СМПР компании НПП «ЭКРА» полностью удовлетворяет требованиям Правил.

ОПИСАНИЕ ПТК «ЭКРА-СМПР»

Комплекс средств мониторинга переходных режимов на базе ПТК «ЭКРА-СМПР» имеет гибкую архитектуру и широкие возможности для связи с существующими системами телемеханики и АСУТП. В зависимости от сложности и размеров объекта предусматривается централизованная или распределенная структура.

Для предприятий с большим количеством контролируемых присоединений могут применяться многомашинные варианты комплекса. В этих случаях предусматривается копирование архивных данных на центральный сервер и ретрансляция параметров от удаленных устройств синхронизированных векторных измерений (УСВИ) в реальном времени.

Комплексы на базе ПТК «ЭКРА-СМПР» являются основными компонентами системы СМПР на уровне энергообъекта. Комплексы обеспечивают измерение и передачу данных СВИ в реальном времени на уровень Филиалов

«СО ЕЭС» РДУ и ОДУ по протоколу С37.118, а так-же длительное (глубиной несколько месяцев) архивирование полного набора измеряемых параметров на собственных резервированных носителях информации с возможностью удаленного доступа. Для связи с локальными системами телемеханики, АСУТП и ССПТИ предусмотрена возможность передачи измеряемых параметров и диагностической информации по протоколу МЭК 61870-5-104.

ПТК «ЭКРА-СМПР» внедряются и успешно работают на многих объектах электроэнергетики в России и странах СНГ, среди них:

- ПС 330кВ Тихвин-Литейный;
- ПС 500кВ Тайшет;
- Красноярская ТЭЦ-3;
- АО «Актобе ТЭЦ», респ. Казахстан;
- и т.д.

СОСТАВ ПТК «ЭКРА-СМПР»

ПТК «ЭКРА-СМПР» предназначен для синхронизированных векторных измерений параметров электрической сети (частоты, токов, напряжений, мощности и др.) в пределах контролируемого объекта в соответствии с ГОСТ Р 59365-2021 «Единая энергетическая система и изолированно работающие энергосистемы. Релейная защита и автоматика. Система мониторинга переходных режимов. Устройства синхронизированных векторных измерений. Нормы и требования», ретрансляции и архивирования данных, а также для передачи архивных данных по каналам связи в диспетчерский пункт в соответствии с ГОСТ Р 59366-2021 «Единая энергетическая система и изолированно работающие энергосистемы. Релейная защита и автоматика. Система мониторинга переходных режимов. Концентраторы синхронизированных векторных данных. Нормы и требования».

ПТК «ЭКРА-СМПР» представляет собой распределенный программно-аппаратный комплекс на базе устройств синхронизированных векторных измерений и концентратора синхронизированных векторных данных (КСВД). По объему выполняемых функций КСВД относится к категории «локальный».

В состав ПТК «ЭКРА-СМПР» также включена Система мониторинга работы системных регуляторов (СМСР). СМСР предназначена для своевременного выявления некорректной работы системы возбуждения (СВ) и авто-

матического регулятора возбуждения (АРВ) синхронных генераторов (системных регуляторов), а также оповещения персонала электростанций и СО для принятия неотложных мер по предотвращению развития аварийной ситуации в энергосистеме.

В состав ПТК «ЭКРА-СМПР» входят:

- резервированные серверы EKRA A01 с функцией локального КСВД типа ES-PDC (до 20 присоединений на КСВД);
- УСВИ типа ЭНИП-2 РМU;
- ПО ES Phasor выполняет мониторинг и поиск источников низкочастотных колебаний (НЧК);
- Устройства измерения параметров системы возбуждения ЭНМВ-3 (СМСР);
- подсистема точного времени EKRA CB-04 (ГЛОНАСС/ GPS):
- система гарантированного электропитания на базе инвертора =220B/~220B (исполнение с инвертором) и/или на базе источника бесперебойного питания ~220B (исполнение с ИБП), а также резервирования на базе ABP.

Типовая структура, изображение шкафа ПТК «ЭКРА-СМПР» и концентратор EKRA A01 приведены на рис 1-3. Основные технические характеристики оборудования ПТК приведены в Таблицах 1-3.

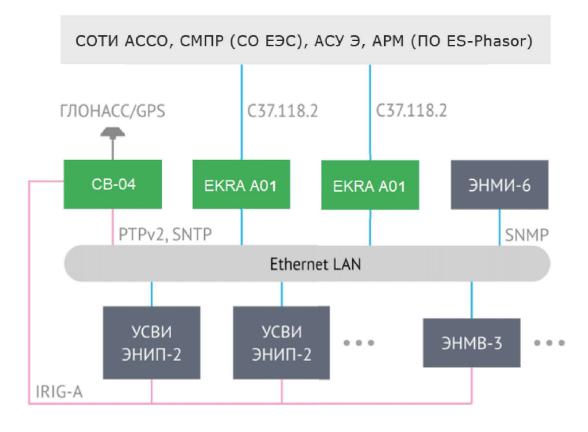


Рисунок 1 - Структурная схема ПТК «ЭКРА-СМПР»

Рисунок 2 - Шкаф ШНЭ 9502 ПТК «ЭКРА-СМПР»

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ ПТК «ЭКРА-СМПР»

- законченное стандартизованное изделие, компонуемое по запросу Заказчика по опросному листу;
- гибкая архитектура, предусматривающая удаленную установку УСВИ с возможностью коррекции задержек сигналов точного времени;
- возможность организации многомашинного комплекса для сложных распределенных объектов;
- возможность контроля параметров системы управления возбуждением генераторов электрических станци;
- синхронизация времени от Российской спутниковой навигационной системы ГЛОНАСС;
- применение в составе комплекса только отечественного оборудования и программного обеспечения. Все компоненты ПТК зарегистрированы в Реестре промышленной продукции, произведенной на территории Российской Федерации Минпромторга;
- точность синхронизации УСВИ от глобальных навигационных спутниковых систем не хуже 1 мкс;
- взаимодействие с Автоматизированной системой Системного Оператора по технологии web-сервисов посредством SOAP-запросов по протоколу HTTP(S) версии не ниже 1.1.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОБОРУДОВАНИЯ ПТК «ЭКРА-СМПР»

Наименование характеристики	Значение
Информационная емкость	до 20 опрашиваемых УСВИ, передача наверх - до 6 направлений
Расчетные величины	U1, U2, U0, Uab, Ubc, Uca, I1, I2, I0, P, Q, S, P1, P2, P0, Q1, Q2, Q0, Pa, Pb, Pc, Qa, Qb, Qc, Sa, Sb, Sc, S1, S2, S0, na, nb, nc, n
Задержка обработки данных	прием пакета УСВИ/передача на верхний уровень: не более 1 с
Циклический архив данных (объем накопителя / количество УСВИ)	до 180 суток (1000 ГБ / 10 УСВИ, 2000 ГБ / 20 УСВИ)
Архив аварийных данных	количество и длина регистрируемых аварийных записей настраиваемые
Интерфейсы, протоколы обмена, форматы данных	4 × Ethernet: 100Base-TX; IEEE C37.118.2, MЭK 60870-5-104, SOAP (HTTP), FTP; CSV, COMTRADE (IEEE/IEC C37.111-2013)
Синхронизация времени	NTP
Питание	дублированный источник питания ~/=220В, =110В, =24В, 40 Вт
Рабочие условия и конструкция	-40+50 °C, 482 × 198 × 45 мм, IP51 по лицевой панели

Рисунок 3 - Концентратор СМПР EKRA A01

Наименование характеристики	Значение	
Синхронизированные векторные измерения тока и напряжения основной гармоники	номинальная частота 50 Гц, рабочий диапазон 4555 Гц измерения в соответствии с С37.118.1 (класс Р и М): TVE < 1%, FE ≤ 0.001 Гц, RFE ≤ 0.1 Гц/с частота передачи измерений - 1/2/5/10/25/50/100 раз в секунду	
Номинальные значения напряжения, В	57,7 (100); 230/400 (фазное/линейное)	
Диапазон измерений напряжения, % от Uном	5 - 150	
Пределы допускаемой основной погрешности измерения действующего значения фазного (линейного) напряжения, %	Приведенная погрешность ±0,2 Относительная погрешность ±0,2 (при 0,2Uном≤U≤1,5Uном ±0,75 при 0,05Uном≤ U<0,2Uном)	
Номинальные значения силы тока, A	1 (5)	
Диапазон измерения силы тока, % от Іном	1 - 200	
Пределы допускаемой основной погрешности измерения силы тока, %	Приведенная погрешность ±0,2 Относительная погрешность ±0,2 (при 0,2Іном≤I≤2Іном ±0,75 при 0,05Іном≤I<0,2Іном ±2 при 0,01Іном≤I<0,02Іном)	
Номинальное значение измеряемой частоты, Гц	50	
Диапазон измерений частоты, Гц	50±5	
Пределы допускаемой основной абсолютной погрешности измерений частоты, Гц	±0,001	
Пределы допускаемой основной погрешности измерений активной (реактивной) мощности, %	Приведенная погрешность ±0,5 Относительная погрешность ±0,5 (при 0,2Іном≤І≤2Іном, 0,2∪ном≤∪≤1,5∪ном, cosφ=1 (sinφ=1))	
Пределы допускаемой основной погрешности измерений	Приведенная погрешность ±0,5	

Дискретные входы до 5

погрешности измерений полной мощности, %

Интерфейсы и протоколы обмена

Напряжение питания

1 × RS-485: IRIG-A/B

45-55Гц или =120-370В; =18-36В

1 или 2 × 100Base-TX: C37.118.2, Modbus TCP, Modbus RTU (UDP), MЭК 60870-5-104, МЭК 60870-5-101 (UDP), МЭК 61850-9-2 (ЭНИП-2-0)

Наименование характеристики	Значение		
	СВ-04 (исп. ∼/=220В)	СВ-04 (исп. =24В)	
Напряжение питания постоянного тока, B	175-342	19-32	
Напряжения питания переменного тока частотой (50 ± 1) Гц, В	175-242	-	
Тотребляемый ток (при UHOM), мА, не более	35	180	
	8 BA	5 Вт	
оличество независимых Ethernet портов	2		
	10/	10/100	
оличество TTL выходов		·	
оличество RS422 выходов	422 выходов		
оличество оптических выходов	2		
	ST		
	ического выхода, нм 820		
	Многомод		
	1		
Параметры импульсного сигнала частотой 1 Гц на выходе TTL: верхний уровень напряжения (логическая «1»), В, не менее нижний уровень напряжения (логический «0»), В, не более	2,6 0,4		
Пределы допускаемой разности, рормируемой ШВ относительно национальной шкалы координированного времени UTC(SU) в режиме синхронизации по сигналам ГНСС ГЛОНАСС/GPS, мкс	±	1	
Среднее квадратическое отклонение результатов измерений ШВ при интервале времени измерения 1 с в режиме инхронизации по сигналам НСС ГЛОНАСС/GPS, нс, не более	5	0	
Предел допускаемой задержки выдачи гелеграммы IRIGB-007 через порт RS-422 относительно формируемой ШВ, нс	100		
Пределы допускаемой абсолютной погрешности хранения формируемой ШВ в автономном режиме работы за 1 сутки при изменении температуры не более 5°C, мс	±]	.0	
абаритные размеры (В×Ш×Г), мм	155×5	6×157	
	0,9	 97	
вид климатического исполнения по ГОСТ 15150-69	УХЛ	3.1	

ТАБЛИЦА 4 - ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭНМВ-3		
Наименование характеристики	Значение	
Входы	2 измерительных входа (приведенная погрешность: ±0.1 %): Вход АІ-1: 10 В, 1000 В Вход АІ-2: 5 мА, 20 мА, 75 мВ, 200 мВ, 10 В	
Интерфейсы и протоколы обмена	2 × 100Base-TX (PRP, RSTP): IEEE C37.118.2, МЭК 60870-5-104, МЭК 60870-5-101, SNMP	
Синхронизация времени	2 × 100Base-TX: IEEE 1588v2 PTP RS-485: PPS, IRIG-A/B	
Питание	1836 B=, 120370 B=, 100265 B~ (4555 Гц), 10 BA	
Рабочий температурный диапазон	-40+70 °C	
Конструкция	109 × 188 × 35 мм, IP20	
Установка	DIN-рейка ТН35	

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калунинград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(727) 345-47-04

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Беларусь +(375) 257-127-884

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47